\(\int \frac {1}{(d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\) [1950]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 37, antiderivative size = 52 \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\left (c d^2-a e^2\right ) (d+e x)} \]

[Out]

2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)/(e*x+d)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {664} \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{(d+e x) \left (c d^2-a e^2\right )} \]

[In]

Int[1/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/((c*d^2 - a*e^2)*(d + e*x))

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a +
b*x + c*x^2)^(p + 1)/((p + 1)*(2*c*d - b*e))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] &&
 EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\left (c d^2-a e^2\right ) (d+e x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.81 \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 (a e+c d x)}{\left (c d^2-a e^2\right ) \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[1/((d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(2*(a*e + c*d*x))/((c*d^2 - a*e^2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 2.94 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.96

method result size
trager \(-\frac {2 \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}{\left (e^{2} a -c \,d^{2}\right ) \left (e x +d \right )}\) \(50\)
gosper \(-\frac {2 \left (c d x +a e \right )}{\left (e^{2} a -c \,d^{2}\right ) \sqrt {c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e}}\) \(51\)
default \(-\frac {2 \sqrt {c d e \left (x +\frac {d}{e}\right )^{2}+\left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}}{e \left (e^{2} a -c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\) \(65\)

[In]

int(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/(a*e^2-c*d^2)/(e*x+d)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.13 \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x} \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)

Sympy [F]

\[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\int \frac {1}{\sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e*(a*e^2-c*d^2)>0)', see `assu
me?` for mor

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Unable to divide, perhaps due to rounding error%%%{%%%{1,[0,0,1]%%%},[2]%%%}+%%%{%%{[%%%{-2,[0,1,0]%%%},0]:
[1,0,%%%{-1

Mupad [B] (verification not implemented)

Time = 10.24 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.96 \[ \int \frac {1}{(d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx=-\frac {2\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{\left (a\,e^2-c\,d^2\right )\,\left (d+e\,x\right )} \]

[In]

int(1/((d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

-(2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2))/((a*e^2 - c*d^2)*(d + e*x))